
PUBLICATIONS
43. Molecularly Engineered MOF-Photocatalyst for CO Production from Visible Light-driven CO2 Reduction
A. Jana, A. Maity, A. Adalder, S. Saha, A. Bhunia, Under revision.
42. Visible-Light-Driven COâ‚‚ Reduction Using Imidazole-Based Metal–Organic Frameworks as Heterogeneous Photocatalysts.
A. Jana, S. Saha, S. S. Mondal, N, Kaur and A. Bhunia, Chem. Asian J. 2024, accepted.
41. Nitrogen Doped In2S3 Nanostructures Integrated with In2O3 Nanorods for Photocatalytic CO2 Reduction
S. Sarkar, P. C. Mandal, O. Ali, K. Takagi, N. Kubota, N. D. Sherpa, N. N. Ghosh, A. Bhunia, A. Fujishima, C. Terashima, and N. Roy, New J. Chem.,
2025, accepted.
40. Superhydrophobic Metal-Organic Framework Based Composite Featuring Removal of Hydrophobic Drug and Pesticide and Antibacterial Activities
A. Rana, S. Ghosh, A. Patel, A. Das, A. Bhunia, D. Manna, D. Volkmer, S. Biswas, 2024, Inorganic Chemistry, 63, 15311.
DOI: 10.1021/acs.inorgchem.4c02005. I.F.: 4.3
39. Bipolar Supercapacitive Performance of N-Containing Carbon Materials Derived from Covalent Triazine-Based Framework
A. Maity, M. Siebels, A. Jana, M. Eswaran, R. Dhanusuraman, C. Janiak, and A. Bhunia, ChemSusChem 2024, e202401716
https://doi.org/10.1002/cssc.202401716. I.F.: 7.5
​
​
38. A postsynthetically modified MOF-808 as a fluorescent sensor for the detection of nitrofurazone antibiotic
A. Das, O. Ali, S. Paul, A. Jana and A. Bhunia, Inorganica Chimica Acta, 2024, https://doi.org/10.1016/j.ica.2024.122163.
IF: 3.118.
37. A pyrrolo[3,2-b]pyrrole core containing covalent triazine-based framework (CTF) for photocatalytic H2 production
O. Ali, A. Jana, S. K. Dey and A. Bhunia, Mater. Adv., 2024, 5, 4720-4727. https://doi.org/10.1039/D4MA00205A
IF: 5.0
36. Single-site cobalt catalyst embedded in a covalent triazine-based framework (CTF) for photocatalytic CO2 reduction
A. Jana, A. Maity, A. Sarkar, B. Show, Preeti A. Bhobe and A. Bhunia, J. Mater. Chem. A, 2024, 12, 5244
IF: 11.9
​
35. An Imidazole Based Luminescent Zn (II) Metal–Organic Framework for Sensing of Nitroaromatic Explosives
A. Jana, J. Mandal, S. S. Mondal, R. Patra, A. Bhunia, Inorganica Chimica Acta, 2023, https://doi.org/10.1016/j.ica.2023.121409
IF: 3.118
34. Covalent Triazine Frameworks Based on the First Pseudo-Octahedral Hexanitrile Monomer via Nitrile Trimerization: Synthesis, Porosity, and CO2 Gas
Sorption Properties
I. D. Wessely, A. M. Schade, S. Dey, A. Bhunia, A. Nuhnen, C. Janiak and S. Bräse, Materials, 2021, 14, 3214. https://doi.org/10.3390/ma14123214.
IF: 3.623
33. Cobaloxime tethered pyridine-functionalized ethylene bridged PMO as efficient HER catalyst
M. Ángeles Navarro, D. Cosano, A. Bhunia, Francisco J. Romero-Salguero and D. Esquivela, Sustainable Energy & Fuels, 2022,6, 398-
407 https://doi.org/10.1039/D1SE01437D. IF: 6.367
32. Synthesis and characterization of covalent triazine framework CTF-1@ polysulfone mixed matrix membranes and their gas separation studies
Subarna Dey, Stefanie Bügel, Sara Sorribas, Alexander Nuhnen, Asamanjoy Bhunia, Joaquín Coronas, and Christoph Janiak, Frontiers in
Chemistry, 2019, 7, 693 (1-9). IF: 5.221
31. Electrocatalytic Hydrogen Evolution from a Cobaloxime-based Metal-Organic Framework Thin Film
Souvik Roy, Zhehao Huang , Asamanjoy Bhunia , Ashleigh Castner , Arvind K. Gupta , Xiaodong Zou , Sascha Ott, J. Am. Chem. Soc., 2019, 141,
15942-15950. IF: 15.419
30. Photodynamics and luminescence of mono- and trinuclear lanthanide complexes in gas phase and solution
F. Liedy, R. Diller, E. Waldt, Y. Nosenko, D. Imanbaew, Asamanjoy Bhunia, Munendra Yadav, Peter W. Roesky, D. Schooss Manfred M. Kappes, C.
Riehn, ChemPhysChem, 2018, 19, 3050-3060.
​
29. Formal water oxidation turnover frequencies from MIL-101(Cr) anchored Ru(bda) depend on oxidant concentration
Asamanjoy Bhunia, Ben A. Johnson, Joanna Czapla-Masztafiak, Jacinto Sá and
Sascha Ott, Chem. Commun, 2018, 54, 7770-7773. Impact Factor: 6.319
28. Light-driven hydrogen evolution catalyzed by a cobaloxime catalyst incorporated in a MIL-101(Cr) metal–organic framework
Souvik Roy, Asamanjoy Bhunia, Nils Schuth, Michael Haumann, and Sascha Ott, Sustainable Energy & Fuels, 2018, 2, 1148-1152.
27. Development of a UiO-type thin film electrocatalysis platform with redox active linkers
Ben A. Johnson, Asamanjoy Bhunia, Honghan Fei, Seth M. Cohen and Sacha Ott, J. Am. Chem. Soc., 2018, 140, 2985-2994. Impact Factor: 15.419
​
26. Mononuclear Metal (II) Complexes of a Bis(organoamido)phosphate Ligand with Antimicrobial Activities against Escherichia coli
Souvik Pal, Abhrajyoti Tarafdar, Alok Sinha, Asamanjoy Bhunia, Klaus Harms, Hari Nayek, Appl. Organometal. Chem., 2017, 31, e3821.
Impact Factor: 3.581
​
25. Two linkers are better than one: Enhancing CO2 capture and separation with porous covalent triazine-Based frameworks from mixed nitrile linkers
Subarna Dey, Asamanjoy Bhunia Hergen Breitzke, Pedro Groszewicz, Gerd Buntkowsky and Christoph Janiak, J. Mater. Chem. A, 2017, 5, 3609.
Impact Factor: 12.732
​
24. A mixed-linker approach towards improving covalent triazine-based frameworks for CO2 capture and separation
Subarna Dey, Asamanjoy Bhunia, Ishtvan Boldog and Christoph Janiak, Micropor. Mesopor. Mater., 2017, 241, 303-315. Impact Factor: 3.349
23. Electrocatalytic Water Oxidation by a Molecular Catalyst Incorporated into a Metal-Organic Framework Thin Film
Ben A. Johnson, Asamanjoy Bhunia and Sascha Ott, Dalton Trans., 2017, 46, 1382-1388. Impact Factor: 4.177
22. A highly stable dimethyl-functionalized Ce(IV)-based UiO- 66 metal-organic framework material for gas sorption and redox catalysis
Rana Dalapati, Balasubramanian Sakthivel, Amarajothi Dhakshinamoorthy, Amlan Buragohain, Asamanjoy Bhunia, Christoph Janiak and Shyam
Biswas, CrystEngComm., 2016, 18, 7855-7864.Impact Factor: 3.858
21. Missing Building Blocks Defects in a Porous Hydrogen-bonded Amide-Imidazolate Network Proven by Positron Annihilation Lifetime Spectroscopy
Suvendu Sekhar Mondal, Subarna Dey, Ahmed G. Attallah, Asamanjoy Bhunia, Alexandra Kelling, Uwe Schilde, Reinhard Krause-Rehberg,
Christoph Janiak, and Hans-Jürgen Holdt, ChemistrySelect, 2016, 1, 4320-4325. IF: 2.109
​
20 A photoluminescent covalent triazine framework: CO2 adsorption, light-driven hydrogen evolution and sensing of nitroaromatics
Asamanjoy Bhunia, Dolores Esquivel, Subarna Dey, Ricardo José Fernández-Terán, Yasutomo Goto, Shinji Inagaki, Pascal Van Der Voort and
Christoph Janiak, J. Mater. Chem. A, 2016, 4, 13450-13457. Impact Factor: 12.732
​
19. Covalent triazine-based frameworks (CTFs) from triptycene and fluorene motif for CO2 adsorption
Subarna Dey, Asamanjoy Bhunia, Dolores Esquivel and Christoph Janiak, J. Mater. Chem. A, 2016, 4, 6259 – 6263. [From themed collection 2016
Journal of Materials Chemistry A Hot Papers]. Impact Factor: 12.732
​
18. Study of the Discrepancies between Crystallographic Porosity and Guest Access into Cadmium-Imidazolate Framework and Tunable Luminescent
Properties by In-situ Incorporation of Lanthanides
S. S. Mondal, A. Bhunia, A. G. Attallah, P. R. Matthes, A. Kelling, U. Schilde, K. Müller-Buschbaum, R. Krause-Rehberg, C. Janiak and H.-J. Holdt,
Chem. Eur. J., 2016, 22, 6905-6913. Impact Factor: 5.731
​
17. Manganese and Lanthanide based 1D Chiral Coordination Polymers as an Enantioselective Catalyst for Sulfoxidation
Munendra Yadav, Asamanjoy Bhunia, Salil K. Jana and Peter W. Roesky, Inorg. Chem., 2016, 55, 2701. Impact Factor: 4.76
16. A Homochiral Vanadium-Salen-Cadmium bpdc MOF with Permanent Porosity as Asymmetric Catalyst in Solvent-Free Cyanosilylation
Asamanjoy Bhunia, Subarna Dey, José María Moreno, Urbano Diaz, Patricia Concepcion, Kristof Van Hecke, Christoph Janiak and Pascal Van Der
Voort, Chem. Commun., 2016, 52, 1401-1404. Impact Factor: 6.378
​
15. Microporous La-Metal Organic Framework with Large Surface Area Souvuk Pal, Asamanjoy Bhunia, Partha P. Jana, Subarna Dey, Jens Moellmer,
Christoph Janiak and Hari Pada Nayek, Chem. Eur. J., 2015, 21, 2789 – 2792. Impact Factor: 5.731
​
14. A High adsorptive properties of covalent triazine-based frameworks (CTFs) for surfactants from aqueous solution
Asamanjoy Bhunia, Subarna Dey, Maria Bous, Chenyang Zhang, Wolfgang von Rybinski and Christoph Janiak, Chem.commun., 2015, 51, 484-486
Impact Factor: 6.378
​
13. Supramolecular Co(II)14-Metal-Organic Cube in a Hydrogen-Bonded Network and a Co(II)-Organic Framework with Flexible Methoxy Substituent
Suvendu Sekhar Mondal, Asamanjoy Bhunia, Alexandra Kelling, Uwe Schilde, Christoph Janiak and Hans-Jürgen Holdt, Chem.Commun, 2014, 50,
5441-5443 (back cover). Impact Factor: 6.718
​
12. Synthesis of Co(II)- Imidazolate Framework from Anionic Linker Precursor: Gas-Sorption and Magnetic Properties
Suvendu Sekhar Mondal, Asamanjoy Bhunia, Alexandra Kelling, Uwe Schilde, Reiner Staudt, Christoph Janiak, and Hans-Jürgen Holdt,
CrystEngComm., 2014, 16, 39-42. Impact Factor: 3.858
​
11. Giant Zn14 Molecular Building Block in Hydrogen-bonded Network with Permanent Porosity for Gas Uptake
Suvendu Sekhar Mondal, Asamanjoy Bhunia, Alexandra Kelling, Uwe Schilde, Christoph Janiak and Hans-Jürgen Holdt, J. Am. Chem. Soc., 2014,
136, 44-47. Impact Factor: 15.419
​
10. Highly stable nanoporous covalent triazine-based frameworks with an adamantane core for carbon dioxide sorption and separation
Asamanjoy Bhunia, Ishtvan Boldog, Andreas Moeller and Christoph Janiak, J. Mater. Chem. A, 2013, 1, 14990-14999.
Impact Factor: 12.732
​
9. Gate effects in a hexagonal zinc-imidazolate-4-amide-5-imidate framework with flexible methoxysubstituents and CO2 selectivity
Suvendu Sekhar Mondal, Asamanjoy Bhunia, Igor A. Baburin, Christian Jäger, Uwe Schilde, Gotthard Seifert, Christoph Janiak and Hans-Jürgen
Holdt, Chem. Commun., 2013, 49, 7599-7601. Impact Factor: 6.718
​
8. Sorption and breathing properties of difluorinated MIL-47 and Al-MIL-53 frameworks
Shyam Biswas, Sarah Couck, Dmytro Denysenko, Asamanjoy Bhunia, Joeri F. M. Denayer, Dirk Volkmer, Christoph Janiak, and Pascal Van Der
Voort, Micropor. Mesopor. Mater., 2013, 181, 175-181. Impact Factor: 3.209
​
7. From a supramolecular tetranitrile to a porous covalent triazine-based framework with high gas uptake capacities
Asamanjoy Bhunia, Vera Vasylyeva and Christoph Janiak, Chem. Commn., 2013, 49, 3961-3963. Impact Factor: 6.718
​
6. Salen-Based Coordination Polymers of Manganese and the Rare-Earth Elements: Synthesis and Catalytic Aerobic Epoxidation of Olefins
Asamanjoy Bhunia, Meike A. Gotthardt, Munendra Yadav, Michael T. Gamer, Andreas Eichhofer, Wolfgang Kleist and Peter W. Roesky, Chem. Eur. J.,
2013, 19, 1986-1995. Impact Factor: 5.696
​
5. Trinuclear nickel–lanthanide compounds
Asamanjoy Bhunia, Munendra Yadav, Yanhua Lan, Annie K. Powell, Fabian Menges, Christoph Riehn, Gereon Niedner-Schatteburg, Partha P. Jana,
Radostan Riedel, Klaus Harms, Stefanie Dehnen and Peter W. Roesky, Dalton Trans., 2013, 42, 2445-2450. Impact Factor: 4.097
​
4. From a Dy(III) Single Molecule Magnet (SMM) to a Ferromagnetic [Mn(II)Dy(III)Mn(II)] Trinuclear Complex
Asamanjoy Bhunia, Michael T. Gamer, Liviu Ungur, Liviu F. Chibotaru, Annie K. Pwell, Yanhua Lan, Peter W. Roesky, Fabian Menges, Christoph
Riehn and Gereon Niedner-Schatteburg, Inorg. Chem., 2012, 51, 9589-9597. Impact Factor: 4.749
​
3. Salen-Based Coordination Polymers of Iron and the Rare Earth Elements
Asamanjoy Bhunia, Yanhua Lan, Valeriu Mereacre, Michael T. Gamer, Annie K. Powell and Peter W. Roesky, Inorg. Chem., 2011, 50,12697-12704.
Impact Factor: 4.749
​
2. Salen-Based Metal Organic frameworks of Nickel and the lanthanides
Peter W. Roesky, Asamanjoy Bhunia, Yanhua Lan, Annie K. Powell and Sven Kureti, Chem. Commun., 2011, 47, 2035. Impact Factor: 6.718
​
1. Salen-Based Infinite Coordination polymers of Nickel and Copper
Asamanjoy Bhunia, Peter W. Roesky, Yanhua Lan, George E. Kostakis and Annie K. Powell, Inorg.Chem., 2009, 48, 10483. Impact Factor: 4.749

